Dockerized YOLOv3 rt-ai SPE = YAOD (yet another object detector)

I had intended to be doing something completely different today (working on auto-compiling highlight reels of interesting events generated from the prototype production rt-ai Edge object detection system) but managed to get sidetracked by reading about Darknet-based YOLOv3.  As Darknet itself is in C and compiles to a shared library this was a good candidate for a Dockerized stream processing element. I used a cuDNN image from NVIDIA as the base since it provides pretty much everything required – I just had to add in the rt-ai SPE library software and compile Darknet on top of that.

The results are pretty good. The preview above shows some detected objects. I discovered that it could detect toothbrushes which is why I am waving one around. It also did a good job of picking up the second mouse just by my left shoulder. 2fps with 1280 x 720 frame size is a little disappointing but this seems to be due to the Python parts of the code since the C demo provided with the library runs much faster. It is a little faster with preview turned off, however (which would be the production mode anyway).

Speaking of production, it does have a problem as it consumes just over 7GB of memory on my GTX 1080 ti GPU card. This means that one GPU card can’t run two instances simultaneously, unlike with the TensorFlow SSD detector. In fact, I can get two instances of that working on a GTX 1080 card with 8GB total memory.

Just for completeness, this is the design which looks just like the usual test designs. The Docker container is built and pushed to a private Docker registry automatically when the design is generated. The target node then just pulls the image from the registry when the design starts up.

This is the MediaView output showing the metadata. The metadata format is equivalent to that generated by the TensorFlow object detector so that they are completely interchangeable.

rt-ai stream processing elements in Docker containers

Docker containers are a great way of reducing the headaches caused by pre-requisites and software versions when deploying code in general and rt-ai SPEs in particular. So it made sense to add support for SPEs in Docker containers in addition to the existing bare metal SPEs. The screen capture above shows the test design in rtaiDesigner using the Docker containerized version of the existing TensorFlow object detector. It is essentially identical to the bare metal version, just with the object detection SPE replaced with the Dockerized version. The container was based on the TensorFlow GPU image.

SPE code is deployed to nodes as a package that includes start and stop scripts. Normally, the start script is something very simple: a single line kicking off a Python script for example. Docker SPEs use a slightly more complex start script that first tries to pull the required Docker image from a defined registry location and then invokes the container in the required manner (using nvidia-docker if necessary).

No changes were required to the SPE code itself in this case – just customization of the start and stop scripts and I added some files used to build the container and install it in the local registry so that the build and update process is very straightforward. Plus, as this test design shows, bare metal and containerized SPEs can be mixed without limitation as the stream interfaces are identical in all cases.

AIY Vision Kit + MobileNet+SSD: a smart camera for rt-ai Edge

I decided that it would be fun to try out a Google AIY Vision Kit as a sort of warm-up for the potentially much more significant Edge TPU.

The Vision Kit is basically the same configuration as the ZeroSensor camera except with an extra board in the camera path that can perform inference on the captured images. The kit comes with some frozen graphs that can be used to detect a few things but I thought it would be interesting to try training a MobileNet SSD network with the Pascal VOC 2012 training data which can identify 20 different objects. The instructions for how to do this are here.

Once that was all running, the next step was to integrate it with rt-ai Edge. It’s pretty similar to the earlier full-blown TensorFlow version so it didn’t take too long to get working.

The design is much the same as usual except with the new VisionKit object detection SPE instead of TFObjectDetect or Deeplab. Note that the PiCam and VisionKit SPEs are running on the AIY Vision Kit, whereas the MediaView SPE is running on a desktop.

This is the output from the MediaView SPE. The metadata has been formatted to look exactly the same as the previous TensorFlow detector so that they can be used interchangeably in stream processing networks. I am getting about 2 fps with 640 x 360 images which is actually better than I expected.

Integrating TensorFlow object detection into rt-ai Edge

I have been using DeepLabv3 for a while now for object detection but I thought it would be interesting to try some examples from the TensorFlow object detection repo. I now have an rt-ai Edge stream processing element that is based on the Jupyter notebook example in the repo. Presumably this will work with any of the models in the model zoo although I am just using the default one for now.

As you can see from the preview capture above (apart from the nasty looking grass on the left) it picks out the car happily, although not with a great confidence level. Maybe it doesn’t like the elevated camera position or the car is a bit too far away or a difficult pose – I will need to do some more experiments. With the preview display on (using PyGame) I am only getting 1 fps with 1280 x 720 frames from the camera which is a little disappointing. However, with preview turned off (the normal production mode anyway), I am getting over 15fps which is entirely adequate.

The capture above shows the raw image along with the object recognition data in the form of metadata rather than drawn on the image. This is actually pretty useful for both real-time and offline processing (such as a machine learning run). Capturing the original image does have the advantage that alternate object detectors could be run at any time, at the expense of having to store more data. Real-time actions can be based on the metadata and the raw image just discarded.

Anyway, definitely a work in progress. It will be interesting to see how it compares with the DeepLabv3 version as the implementation gets more efficient. What’s nice is that it is trivial to swap out one object detector for another or run them in parallel in order to run tests. Just takes a few seconds with the rtaiDesigner GUI.

rtaiView: an rt-ai app for viewing real-time and historic sensor data

I am now pulling things together so that I can use the ZeroSensors to perform long-term data collection. Data generated by the rt-ai Edge design is passed into the Manifold and then captured by ManifoldStore, one of the standard Manifold nodes. Obviously it would be nice to know that meaningful data is being stored and that’s where rtaiView comes in. The screen capture above shows the real-time display when it has been configured to receive streams from the video and data components of the ZeroSensor streams. This is showing the streams from a couple of ZeroSensors but more can be added and the display adjusts accordingly.

This is the simple ZeroSpace design as seen in the rtaiDesigner editor window. The hardware setup consists of the ZeroSensors running the SensorZero synth stream processor element (SPE) and a server running the DeepLabv3 SPEs and the ManifoldZero synths. The ManifoldZero synths consist of a couple of PutManifold SPEs that take each stream from the ZeroSensor and map it to a Manifold stream.

ManifoldStore captures these streams and persists them to disk as can be seen from the screen capture above.

This allows rtaiView to display the real-time data coming from the ZeroSensors and historic data based on timecode.

The screen capture above shows rtaiView in historic (or DVR) mode. The control widget (at the top right) allows the user to scan through periods of time and visualize the data. The same timecode is used for all streams displayed, making it easy to correlate events between them.

rtaiView is a useful tool for checking that the rt-ai Edge design is operating correctly and that the data stored is useful. In these examples, I have set DeepLabv3 to color map recognized objects. However, this is not the desired mode as I just want to store images that have people detected in them and then have the images only contain the people. The ultimate goal is to use these image sequences along with other sensor data to detect anomalous behavior and also to predict actions so that the rt-ai Edge enabled sentient space can be proactive in taking actions.

Scaling embedded edge inference with rt-ai Edge synth modules

Now that edge devices with embedded inference support are starting to appear, there’s a need for scalable deployment of software and configuration data to these devices. rt-ai Edge can address this scaling requirement using synth modules. Synth modules are composite elements in a stream processing network (SPN) that combine simpler stream processing elements (SPEs) into more complex structures. The idea is that a synth module can be created that contains the SPEs required for a specific type of embedded edge inference device. This synth module can then be deployed, configured and managed for all instances of this type of edge inference device very easily using the rtaiDesigner tool.

The screen capture above is an example of the output from an SPN that includes two differently configured DeepLab v3+ instances along with associated video and audio capture SPEs. The top level SPN looks like this:

There are two synth modules in the design, both instances of the same underlying synth module:

This simple synth module consists of a video capture SPE, an audio capture SPE and the DeepLab v3+ SPE.

As with standard SPEs, synth modules can be allocated to any node in the rt-ai Edge network. The only limitation at present is that all SPEs in an instance of a synth module must run on the same node. This will be relaxed at later date when automatic SPE placement based on available resources is implemented. A synth module can be instanced multiple times on the same node or different nodes as required. In this example, two instances of the same synth module were placed on the Default node.

Individual instances of a synth module can be configured in the top level design:

In this case, Synth0 is being configured. Note the tabs in the dialog. There is one tab for each SPE in the underlying synth module. SPE dialogs are auto-generated from a JSON spec in the SPE design directory. This makes it very easy to construct a combined dialog when SPEs are used in a synth module. Any design can be turned into a synth module just by pressing the Generate synth module button. The synth module then becomes available in the Add module dialog just like any other SPE.

As designs are completely regenerated every time the Generate design button is pressed, internal changes can be made to the synth module at any time and they will be reflected in top level designs the next time that they are generated.

Right now, synth module designs cannot include synth modules, only standard SPEs. If multi-level synth modules were required, it would be a small extension of the current implementation. For now, the ability to reproduce and configure a standard SPN subnetwork multiple times is sufficient to scale most edge inference applications.

Real time edge inference monitoring with rt-ai Edge

rt-ai Edge is progressing nicely and now supports multi-node operation (i.e. multiple networked servers participating in a processing network) along with real-time monitoring. The screen capture shows a simple processing network where the video feed from a camera is passed through a DeepLab-v3+ stream processing element (SPE) and then on to two separate media viewers. At the top of each SPE block in the Designer window is some text like Cam(Default). Here, Cam is the name given to the SPE while Default is the name of the node (server) on which the SPE is running. In this design there are two nodes, Default and rtai0.

The code underlying the common SPE API communicates with the Designer window and supplies the stats about bytes and messages in and out. Soon, this path will also allow SPE-specific real-time parameter tweaking from the Designer window.

To add a node to the system, it just needs to have all of the prerequisites installed and run a special NodeManager SPE. This also communicates with the Designer and supports SPE deployment and runtime control, activated when the user presses the Deploy design button. Moving an SPE between nodes is just a case of reassigning it, generating the design and then deploying the design again.

The green outlines around each SPE indicate the state of the SPE and the node on which it is running. When it is all green, as in the first screen capture, this indicates that both SPE and node are running. For the second screen capture, I manually terminated the View2 SPE on rtai0. The inner part of the outline has now gone red. This indicates that the node is up but the SPE is down. If the outline is all red, it means that the node is down and not communicating with the Designer.

It’s interesting to note that DeepLab-v3+ is processing around 5 frames per second using a GTX-1080 GPU. The input rate from the camera is 30 frames per second. The processor drops frames while it is still processing an earlier frame, ensuring that queues do not build up and latency is kept to a minimum.