An rt-ai Edge architecture for scalable on-demand edge inference systems


Previous rt-ai Edge designs, such as the driveway monitor, are static in the sense that they just sit there, running 24/7. Another mode of operation is dynamic, where stream processing networks are created on demand and accessible via standard interfaces. This is appropriate for offloading inference from mobile devices in a sentient space for example. As users enter the space, apps on their mobile devices (XR headsets, tablets, phones etc) can access inference and other processing resources from the edge compute system supporting the space.

There are three main components in a dynamic rt-ai Edge system:

  • Composable Processing Pipeline (CPP). This is the dynamic analog of the static Stream Processing Network (SPN). A CPP is a set of Stream Processing Elements (SPEs) that has been designed using rtaiDesigner. The main difference between a CPP and an SPN is that, in general, the CPP contains no data sources or sinks: these are provided by the user app.
  • Conductor. The Conductor is responsible for managing an allocated resource session. User apps interact directly with the Conductor via a Websocket API while the Conductor maps data flowing on the Websocket API to and from the MQTT interfaces on the CPP(s) that have been allocated to that session.
  • Orchestrator. The Orchestrator manages the dynamic system. User apps interact with the Orchestrator to request resource. The Orchestrator allocates necessary CPP resources and creates a Conductor instance to act as the source and sink for the CPP(s). The user apps are then redirected to the Websocket API on the new Conductor instance at which point data can flow to and from the user. The Orchestrator is responsible for managing all of the rt-ai Edge nodes that have been allocated to the edge compute system, allocating CPPs to nodes dynamically based on available resources and hardware (e.g. GPU or embedded inference hardware).

The diagram above shows the idle state. The heart of this design is the Orchestrator as it directs all operations. When a user (via an app or browser) wants to use some edge resource, it uses the RESTful API of the Orchestrator to identify itself and define the details of the resources that it requires. The requested resources are then mapped to one or more CPP types. In this example, the Orchestrator maintains a hot pool of CPPs to minimize start up latency. Hot pool CPPs are instantiated but idle as they have no data sources. As the Orchestrator allocates CPPs from the pool, the Orchestrator creates new CPP instances to replace them. This is useful because inference SPEs can have startup times of several seconds. The hot pool hides this delay from the user. Note that the hot pool could consist of multiple types of CPPs that perform different functions – the Orchestrator just selects the correct type to satisfy the resource request. Alternatively, there could be a fixed set of CPP instances and users are just allocated to those. Or, CPPs can be instantiated on demand if startup latency is not an issue.

Once the Orchestrator has identified one or more CPPs to satisfy the resource request, it creates a Conductor instance for the request. The Conductor presents a Websocket API to the user while connecting into rt-ai Edge’s MQTT infrastructure to communicate with the CPPs. If there is only a single CPP involved, the input pin of the CPP is connected to the output pin of the Conductor and the input pin of the Conductor is connected to the output pin(s) of the CPP. If there is more than one CPP required, the CPPs are connected together as required (this can be an arbitrary graph, not just a pipeline) and the input and output pin(s) at the edges connected to the Conductor. Once this is all set up, the Orchestrator redirects the user app to the new Conductor instance and the session can begin as shown below:


As an example, suppose an AR headset user wants to identify and annotate objects in the real world using an AR overlay. In this case, the user app might request a CPP that performs the appropriate object detection and returns the box coordinates of the object and an identified label. The user app would stream the video feed from the AR headset to the Conductor using the Websocket connection. The Conductor would then pass the video frames on to the CPP. The output of the CPP would contain the detected object metadata that is passed via the Conductor onto the Websocket connection back to the user app for rendering.

Old-school IoT sensing with absolutely no AI

Winter is coming, as one might say. Actually it is here, with freezing temperatures and inches of snow. Time to turn on the heater in the garage. However, if someone leaves a door open it will heat the atmosphere in general and burn through all of the propane. Yes, it would be absolutely trivial to put magnetic sensors on the doors that turn off the heater if the door is open but that is no fun at all. This has actually been a long-running project with all kinds of interesting solutions, some even including Apache NiFi and other big data things. One solution used Insteon and actually allowed the system to automatically close doors. However, various disasters could occur and I turned this system off. In any case, the Insteon door sensors were not reliable.

The root of the problem is that the system really has to understand what is happening in the space, not just the states of various parts of it. Someone could be just about to back a car out when the system decides to shut a door. Not good. Seemingly, a perfect and autonomous solution is still a little way down the road. A short term hack seems in order, however!

Since I am working on rt-ai Edge right now, it was natural to think about how to use rt-ai Edge to solve this problem. I have some ZeroSensors around so I put one of them in the garage. I realized that, when the doors are shut, the garage is very dark and the temperature stable at the thermostat setting (allowing for hysteresis). If a door is open, the garage gets illuminated in one way or another (garage door motor lights, ambient light, outside lights at night etc) and is a somewhat reliable, albeit indirect, indicator of door status. Also, the temperature will drop pretty quickly, giving an indication that either a door is open or the heater has failed.

Given how simple this is, I put together a quick filter SPE to process the light and temperature data from a ZeroSensor and send me an email if the doors are seemingly open for more than a preset time. The screen capture above shows what is going on. There are actually a couple of stream processing networks (SPNs) in action in this space, mainly running on the rtai0 node. One of them is the YOLO-based driveway vehicle detection system while the other is the garage environmental sensing network. A node can be running multiple SPNs at the same time – they are ships in the night and can be managed totally independently.

 

This screen capture shows the configuration dialog for the SensorFilter SPE. I currently also have it set to confirm when the garage doors have been shut so that I know if someone else has taken care of the problem.

Another step would be to turn the heater off if a door is open and the temperature is dropping – right now, I am not planning to allow the door to be shut remotely for the reasons mentioned earlier. At least turning the heater off avoids wasting a load of energy. I can control the heater via Insteon. I would just need another SPE to provide the interface between the filtered alerts and my Insteon server.

Still, one day it would be nice to do this properly. This entails understanding the state of the space – things like are there any people in it? This is not completely trivial as the system can’t always see someone inside a car. However, it can assume (until I get an autonomous vehicle) that if a car is moving or has moved, there must be someone driving and, until the system detects that person leaving the space, it must also assume that it should take no autonomous action. However, it needs to maintain state in order to be sure that there’s nobody in the space (or in a car just outside the space) so that it can take control. I have a feeling that there may be quite a few corner cases with this but it would be fun to try, even if it only simulates trying to close doors.

Completed ZeroSensors all ready for long term data collection

Finally this is a ZeroSensor all ready to go into full time service, capturing video, audio and environmental data. The goal is to use this data, and that from other cameras around the space, as training data for machine learning systems.

One specific goal is to create an anomaly detector with minimal supervision. As much as possible, it will learn from experience. This is kind of tricky as it requires detection of unknown length sequences depending on the circumstances. I am intrigued by the ideas behind the Universal Translator but not sure how much could carry over to this application. This paper reviews some of the techniques usually applied, at least for video processing. The situation here is a little different as there are quite different types of features involved. My plan is to preprocess video and audio to recognize salient features (using object detection or whatever) and then input these features, along with environmental sensor data, in the form of uniform time-slotted data sets to the anomaly detector. This doesn’t help with detecting the length of an interesting sequence – that’s the fun part of the project.

rtaiView: an rt-ai app for viewing real-time and historic sensor data

I am now pulling things together so that I can use the ZeroSensors to perform long-term data collection. Data generated by the rt-ai Edge design is passed into the Manifold and then captured by ManifoldStore, one of the standard Manifold nodes. Obviously it would be nice to know that meaningful data is being stored and that’s where rtaiView comes in. The screen capture above shows the real-time display when it has been configured to receive streams from the video and data components of the ZeroSensor streams. This is showing the streams from a couple of ZeroSensors but more can be added and the display adjusts accordingly.

This is the simple ZeroSpace design as seen in the rtaiDesigner editor window. The hardware setup consists of the ZeroSensors running the SensorZero synth stream processor element (SPE) and a server running the DeepLabv3 SPEs and the ManifoldZero synths. The ManifoldZero synths consist of a couple of PutManifold SPEs that take each stream from the ZeroSensor and map it to a Manifold stream.

ManifoldStore captures these streams and persists them to disk as can be seen from the screen capture above.

This allows rtaiView to display the real-time data coming from the ZeroSensors and historic data based on timecode.

The screen capture above shows rtaiView in historic (or DVR) mode. The control widget (at the top right) allows the user to scan through periods of time and visualize the data. The same timecode is used for all streams displayed, making it easy to correlate events between them.

rtaiView is a useful tool for checking that the rt-ai Edge design is operating correctly and that the data stored is useful. In these examples, I have set DeepLabv3 to color map recognized objects. However, this is not the desired mode as I just want to store images that have people detected in them and then have the images only contain the people. The ultimate goal is to use these image sequences along with other sensor data to detect anomalous behavior and also to predict actions so that the rt-ai Edge enabled sentient space can be proactive in taking actions.

ZeroSensor case design

It has taken a while to get to this point but, now the focus is back on rt-ai Edge, it is time to get the ZeroSensors sorted out properly. The design above is the prototype 3D printed case. It’s a free standing case, about 3 inches by 2.7 inches and 1.4 inches deep. The biggest problem with these things is getting thermal isolation so that the temperature reading is from the outside air rather than Raspberry Pi Zero heated air. The big baffle on the rear (on the right of the image above) is intended to keep the air separate in the two halves. The little slot is to allow four thin cables to run between the Pi and the sensor boards. Right now the back has no holes so that air flow is fully bottom to top convection on both the sensor side and the Pi side. However, this might need to be changed if the initial design doesn’t work. The plastic material will conduct heat so it may be necessary to add more thermal isolation using holes or slots in the back.

An rt-xr SpaceObjects tour de force

rt-xr SpaceObjects are now working very nicely. It’s easy to create, configure and delete SpaceObjects as needed using the menu switch which has been placed just above the light switch in my office model above.

The video below shows all of this in operation.

The typical process is to instantiate an object, place and size it and then attach it to a Manifold stream if it is a Proxy Object. Persistence, sharing and collaboration works for all relevant SpaceObjects across the supported platforms (Windows and macOS desktop, Windows MR, Android and iOS).

This is a good place to leave rt-xr for the moment while I wait for the arrival of some sort of AR headset in order to support local users of an rt-xr enhanced sentient space. Unfortunately, Magic Leap won’t deliver to my zip code (sigh) so that’s that for the moment. Lots of teasers about the HoloLens 2 right now and this might be the best way to go…eventually.

Now the focus moves back to rt-ai Edge. While this is working pretty well, it needs to have a few bugs fixed and also add some production modes (such as auto-starting SPNs when server nodes are started). Then begins the process of data collection for machine learning. ZeroSensors will collect data from each monitored room and this will be saved by ManifoldStore for later use. The idea is to classify normal and abnormal situations and also to be proactive in responding to the needs of occupants of the sentient space.

Latest rt-xr toy: shared virtual whiteboards

Since the sticky note idea now works, I thought that it would be fun to do a freehand version – a virtual whiteboard. It’s working pretty reasonably now. I placed a big whiteboard in my virtual office as you can see above to show how two or more occupants of the space can work together on a shared virtual whiteboard. The video below shows how this works.

The screen on the left is the desktop rt-xrViewer app, the screen on the left is the Mixed Reality Portal showing the Windows Mixed Reality rt-xrViewer app. The mouse is used to draw on the whiteboard in the desktop app (blue lines), motion controllers are used for the WMR app (red lines).

This also shows the new interaction rays. They sort of emanate from where the nose of the avatar should be.

They help give a sense of what the virtual occupants are doing. Otherwise, writing on the whiteboard seems a bit ghostly.

Whiteboards are actually proxy objects, driven from a special server that’s part of the SharingServer. The whiteboard itself is a completely dumb graphical asset. This makes it ideal for packaging as a Unity assetbundle and downloading at runtime rather than having to be built into the app. The required standard scripts included with rt-xrViewer are attached after a proxy object is instantiated.

This is the first time that proxy objects have supported interaction, opening the door to more interesting proxy objects in the future.