rt-ai: real time stream processing and inference at the edge enables intelligent IoT

The “rt” part of rt-ai doesn’t just stand for “richardstech” for a change, it also stands for “real-time”. Real-time inference at the edge will allow decision making in the local loop with low latency and no dependence on the cloud. rt-ai includes a flexible and intuitive infrastructure for joining together stream processing pipelines in distributed, restricted processing power environments. It is very easy for anyone to add new pipeline elements that fully integrate with rt-ai pipelines. This leverages some of the concepts originally prototyped in rtndf while other parts of the rt-ai infrastructure have been in 24/7 use for several years, proving their intrinsic reliability.

Edge processing and control is essential if there is to be scalable use of intelligent IoT. I believe that dumb IoT, where everything has to be sent to a cloud service for processing, is a broken and unscalable model. The bandwidth requirements alone of sending all the data back to a central point will rapidly become unworkable. Latency guarantees are difficult to impossible in this model. Two advantages of rt-ai (keeping raw data at the edge where it belongs and only upstreaming salient information to the cloud along with minimizing required CPU cycles in power constrained environments) are the keys to scalable intelligent IoT.