Optimizing inference engine utilization with multiplexed streams


One of the issues with the GPU-based CYOLO (for example) is that it uses about 8GB of GPU memory meaning that, even on a GTX 1080 ti GPU card, it is only possible to have one instance of the CYOLO SPE on any one GPU card. A way around this is to run multiple streams through a single SPE instance. The architecture of rt-ai Edge always supported fan in (i.e. stream multiplexing) but not fan out (i.e. stream demultiplexing). The new FanOut module solves this problem. The screen capture above shows the new FanOut SPE running with the Intel NCS 2-based CSSD SPE. Video streams from three cameras are multiplexed on the CSSD SPE’s input pin. The multiplexed output is then passed to the FanOut SPE which demultiplexes the composite stream to up to eight individual streams. The screen capture also shows the FanOut configuration dialog – you just enter the source SPE name for the stream to be associated with each output pin.


Since my second NCS 2 has arrived I was able to run the triple NCS configuration shown above. The old NCS didn’t really contribute much in this case – the two NCS 2s were able to get an aggregate throughput of around 26 frames per second. This is shared between the three input streams of course.

The fan in/fan out multiplexing idea fits very well with the NCS 2 as you can just add more NCS 2s (or more likely, a special purpose multiple Myriad X board) to a node to increase aggregate throughput.

2 thoughts on “Optimizing inference engine utilization with multiplexed streams”

  1. Hello Richard,

    I was looking to replicate what you did in this article, but couldn’t find this rt-ai Edge software. Is this your own software? How does someone get a hold of it?

    Thanks,
    Krisztian

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.