Simplified workflow for YOLOv3 retraining

Following on from the previous post, I have now put together a pretty usable workflow for creating custom YOLOv3 models – the code and instructions are here. There are quite a few alternatives out there already but it was interesting putting this together from a learning point of view. The screen capture above was taken during some testing. I stopped the training early (which is why the probabilities are pretty low) so that I could test the weights with an rt-ai stream processing network design and then restarted the training. The tools automatically generate customized scripts to train and restart training, making this pretty painless.

There is a tremendous amount of valuable information here, including the code for the custom anchor generator that I have integrated into my workflow. I haven’t yet tried this enhanced version of Darknet yet but will do that soon. One thing I did learn from that repo is that there is an option to treat mirror image objects as distinct objects – no doubt that was what was hindering the accurate detection of the left and right motion controllers previously.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.