Scaling dynamic sentient spaces to multiple locations

One of the fundamental concepts of the rt-xr and rt-ai Edge projects is that it should be possible to experience a remote sentient space in a telepresent way. The diagram above shows the idea. The main sentient space houses a ManifoldNexus instance that supplies service discovery, subscription and message passing functions to all of the other components. Not shown is the rt-ai Edge component that deals with real-time intelligent processing, both reactive and proactive, of real-world sensor data and controls. However, rt-ai Edge interconnects with ManifoldNexus, making data and control flows available in the Manifold world.

Co-located with ManifoldNexus are the various servers that implement the visualization part of the sentient space. The SpaceServer allows occupants of the space to download a space definition file that is used to construct a model of the space. For VR users, this is a virtual model of the space that can be used remotely. For AR and MR users, only augmentations and interaction elements are instantiated so that the real space can be seen normally. The SpaceServer also houses downloadable asset bundles that contain augmentations that occupants have placed around the space. This is why it is referred to as a dynamic sentient space – as an occupant either physically or virtually enters the space, the relevant space model and augmentations are downloaded. Any changes that occupants make get merged back to the space definition and model repository to ensure that all occupants are synced with the space correctly. The SharingServer provides real-time transfer of pose and audio data. The Home Automation server provides a way for the space model to be linked with networked controls that physically exist in the space.

When everything is on a single LAN, things just work. New occupants of a space auto-discover sentient spaces available on that LAN and, via a GUI on the generic viewer app, can select the appropriate space. Normally there would be just one space but the system allows for multiple spaces on a single LAN if required. The issue then is how to connect VR users at remote locations. As shown in the diagram, ManifoldNexus has to ability to use secure tunnels between regions. This does require that one of the gateway routers has a port forwarding entry configured but otherwise requires no configuration other than security. There can be several remote spaces if necessary and a tunnel can support more than one sentient space. Once the Manifold infrastructure is established, integration is total in that auto-discovery and message switching all behave for remote occupants in exactly the same way as local occupants. What is also nice is that multicast services can be replicated for remote users in the remote LAN so data never has to be sent more than once on the tunnel itself. This optimization is implemented automatically within ManifoldNexus.

Dynamic sentient spaces (where a standard viewer is customized for each space by the servers) is now basically working on the five platforms (Windows desktop, macOS, Windows Mixed Reality, Android and iOS). Persistent ad-hoc augmentations using downloadable assets is the next step in this process. Probably I am going to start with the virtual sticky note – this is where an occupant can leave a persistent message for other occupants. This requires a lot of the general functionality of persistent dynamic augmentations and is actually kind of useful for change!

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.